The generator matrix 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 X 1 1 1 1 1 1 1 1 1 1 0 1 1 1 2X 1 X 1 X 1 1 1 1 1 1 1 1 X 1 1 1 X 1 1 1 1 1 1 4X 1 1 1 1 1 3X 1 1 1 2X 1 1 1 1 1 1 X 1 3X 1 1 1 1 4X 1 1 1 1 1 1 1 1 0 1 1 2 4 3 3X+1 0 2 1 3 3X+4 0 3X+1 3X+4 1 2 3 1 2 3X+4 0 3X+1 3 X+3 X+2 X 3X+4 3X+1 1 X 2X+2 2X+4 1 2X+4 1 4X+1 1 X+3 2 3X+4 3X X+1 2X+1 4X X+3 1 X+2 4X+1 X 1 3 2X+4 X+2 X+2 0 2X 1 3X+3 3X 3X+2 4X+4 2X+3 1 3X+1 2 1 1 2X+1 2X+2 X+2 X 1 4X+4 1 1 1 X+2 2 X+2 2X+2 1 4X+1 3X+4 X+4 4 X+4 2X+2 0 0 0 0 3X 0 0 0 0 X 2X 3X 2X 3X 2X 4X 0 2X 2X 2X 2X 3X X 2X 0 2X 2X 3X 3X X X 3X 4X 3X 0 X 4X X 2X 2X 4X 0 3X 0 X 4X 4X 4X 2X 4X 2X 4X X 4X 2X 0 0 2X 0 0 0 2X 3X 0 3X 3X 3X 2X 0 X X 0 X 2X X 4X X 0 3X 4X X X 2X 2X 2X 2X 4X 3X 2X 3X 0 0 0 0 0 X 0 X 3X 3X 0 2X 2X 4X 2X 2X 3X 0 2X X X X 0 4X 3X 4X 0 3X 3X X 3X 0 3X X 4X X X 2X 3X 3X X 4X 0 2X 2X 2X 4X 4X 4X 3X 3X 0 0 4X 0 0 4X X 4X 3X 2X 2X 0 4X 3X X 4X X 4X X 4X 2X 3X X 3X 2X 0 2X 3X 4X 0 X 0 0 X X X 4X 0 3X 0 X 0 0 0 0 3X 3X 2X 4X 4X X 4X 4X 2X 0 0 0 3X 2X 3X 2X X 2X X X X 0 4X 4X X X 3X X X X X 2X X 2X 0 4X 4X 4X 4X 3X 4X 2X 0 2X 3X 4X X 3X 0 3X 3X X X 4X X X 2X 3X 2X 4X 4X 4X 0 0 2X 0 0 3X 4X 2X 0 3X 3X 3X 3X X 3X 2X 4X 2X 2X 3X 2X 4X 3X 4X generates a code of length 90 over Z5[X]/(X^2) who´s minimum homogenous weight is 335. Homogenous weight enumerator: w(x)=1x^0+140x^335+20x^336+160x^339+944x^340+260x^341+740x^344+2680x^345+800x^346+1420x^349+5748x^350+1720x^351+2000x^354+9704x^355+2200x^356+2160x^359+12376x^360+2980x^361+3100x^364+12880x^365+2640x^366+1920x^369+6752x^370+1600x^371+740x^374+1376x^375+280x^376+260x^379+88x^380+116x^385+132x^390+68x^395+40x^400+48x^405+28x^410+4x^415 The gray image is a linear code over GF(5) with n=450, k=7 and d=335. This code was found by Heurico 1.16 in 16.9 seconds.